Seed dormancy

Seed dormancy is a condition of plant seeds that prevents germination when the seeds are under optimal environmental conditions for germination. Living, non dormant seeds germinate when soil temperatures and moisture conditions are suited for cellular processes and division; dormant seeds do not.

One important function of most seeds is delayed germination, which allows time for dispersal and prevents germination of all the seeds at same time. The staggering of germination safeguards some seeds and seedlings from suffering damage or death from short periods of bad weather or from transient herbivores; it also allows some seeds to germinate when competition from other plants for light and water might be less intense. Another form of delayed seed germination is seed quiescence, which is different than true seed dormancy and occurs when a seed fails to germinate because the external environmental conditions are too dry or warm or cold for germination.[1] Many species of plants have seeds that delay germination for many months or years, and some seeds can remain in the soil seed bank for more than 50 years before germination. Some seeds have a very long viability period, and the oldest documented germinating seed was nearly 2000 years old based on radiocarbon dating.[2]

Contents

Overview

True dormancy or innate dormancy is caused by conditions within the seed that prevent germination under normally ideal conditions. Often seed dormancy is divided into two major categories based on what part of the seed produces dormancy: exogenous and endogenous.[3] There are three types of dormancy based on their mode of action: physical, physiological and morphological.[4]

There have been a number of classification schemes developed to group different dormant seeds, but none have gained universal usage. Dormancy occurs because of a wide range of reasons that often overlap, producing conditions in which definitive categorization is not clear. Compounding this problem is that the same seed that is dormant for one reason at a given point may be dormant because of another reason at a later point. Some seeds fluctuate from periods of dormancy to non dormancy, and despite the fact that a dormant seed appears to be static or inert, in reality they are still receiving and responding to environmental cues.

Exogenous dormancy

Exogenous dormancy is caused by conditions outside the embryo and is often broken down into three subgroups:

Physical dormancy

Which occurs when seeds are impermeable to water or the exchange of gases.[5] Legumes are typical examples of physically dormant seeds; they have low moisture content and are prevented from imbibing water by the seed coat. Chipping or cracking of the seed coat or any other coverings allows water intake. Impermeability is often caused by an outer cell layer which is composed of macrosclereid cells or the outer layer is composed of a mucilaginous cell layer. The third cause of seed coat impermeability is a hardened endocarp. Seed coats that are impermeable to water and gases form during the last stages of seed development.

Mechanical dormancy

Mechanical dormancy occurs when seed coats or other coverings are too hard to allow the embryo to expand during germination.[6] In the past this mechanism of dormancy was ascribed to a number of species that have been found to have endogenous factors for their dormancy instead. These endogenous facts include physiologically dormancy cased by low embryo growth potential [7]

Chemical dormancy

Includes growth regulators etc., that are present in the coverings around the embryo. They may be leached out of the tissues by washing or soaking the seed, or deactivated by other means. Other chemicals that prevent germination are washed out of the seeds by rainwater or snow melt.

Endogenous dormancy

Endogenous dormancy is caused by conditions within the embryo itself, and it is also often broken down into three subgroups: physiological dormancy, morphological dormancy and combined dormancy, each of these groups may also have subgroups.

Physiological dormancy

Physiological dormancy prevents embryo growth and seed germination until chemical changes occur.[1] These chemicals include inhibitors that often retard embryo growth to the point where it is not strong enough to break through the seed coat or other tissues. Physiological dormancy is indicated when an increase in germination rate occurs after an application of gibberellic acid (GA3) or after Dry after-ripening or dry storage. It is also indicated when dormant seed embryos are excised and produce healthy seedlings: or when up to 3 months of cold (0-10°C) or warm (=15°C) stratification increases germination: or when dry after-ripening shortens the cold stratification period required. In some seeds physiological dormancy is indicated when scarification increases germination.[8]

Physiological dormancy is broken when inhibiting chemicals are broken down or are no longer produced by the seed; often by a period of cool moist conditions, normally below (+4C) 39F, or in the case of many species in Ranunculaceae and a few others,(-5C) 24F. Abscisic acid is usually the growth inhibitor in seeds and its production can be affected by light. Some plants like Peony species have multiple types of physiological dormancy, one affects radicle (root) growth while the other affects plumule (shoot) growth. Seeds with physiological dormancy most often do not germinate even after the seed coat or other structures that interfere with embryo growth are removed. Conditions that affect physiological dormancy of seeds include:

Seeds are classified as having deep physiological dormancy under these conditions: applications of GA3 does not increase germination; or when excised embryos produce abnormal seedlings; or when seeds require more than 3 months of cold stratification to germinate.

Morphological dormancy

Embryo underdeveloped or undifferentiated. Some seeds have fully differentiated embryos that need to grow more before seed germination, or the embryos are not differentiated into different tissues at the time of fruit ripening.

Combined dormancy

Seeds have both morphological and physiological dormancy.

Combinational dormancy

Combinational dormancy occurs in some seeds, where dormancy is caused by both exogenous (physical) and endogenous (physiological) conditions.[10][11][12] some Iris species have both hard impermeable seeds coats and physiological dormancy.

Secondary dormancy

Secondary dormancy occurs in some non-dormant and post dormant seeds that are exposed to conditions that are not favorable for germination, like high temperatures. It is caused by conditions that occur after the seed has been dispersed. The mechanisms of secondary dormancy are not yet fully understood but might involve the loss of sensitivity in receptors in the plasma membrane.[13]

Not all seeds undergo a period of dormancy, many species of plants release their seeds late in the year when the soil temperature is too low for germination or when the environment is dry. If these seeds are collected and sown in an environment that is warm enough, and/or moist enough, they will germinate. Under natural conditions non dormant seeds released late in the growing season wait until spring when the soil temperature rises or in the case of seeds dispersed during dry periods until it rains and there is enough soil moisture.

Seeds that do not germinate because they have fleshy fruits that retard germination are quiescent, not dormant.[7]

Many garden plants have seeds that will germinate readily as soon as they have water and are warm enough, though their wild ancestors had dormancy. These cultivated plants lack seed dormancy because of generations of selective pressure by plant breeders and gardeners that grew and kept plants that lacked dormancy.

Seeds of some mangroves are viviparous and begin to germinate while still attached to the parent; they produce a large, heavy root, which allows the seed to penetrate into the ground when it falls.

See also

References

  1. ^ a b Fenner, Michael; Thompson, Ken (2005), "The ecology of seeds", Publisher Cambridge University Press: 98, ISBN 9780521653688, http://books.google.com/?id=bzflp9q5tNIC&pg=PA97, retrieved 2009-08-15 
  2. ^ RANDOLPH E. SCHMID, 'Tree from 2,000-year-old seed is doing well'. AP, Jun 12, 2008
  3. ^ Different Types of Seed Dormancy | Royal Tasmanian Botanical Gardens
  4. ^ Fenner, Michael; Thompson, Ken (2005), "The ecology of seeds", Publisher Cambridge University Press: 97, ISBN 9780521653688, http://books.google.com/?id=bzflp9q5tNIC&pg=PA97, retrieved 2009-08-15 
  5. ^ Chawla, H. S. (2002), Introduction to plant biotechnology, Vol 2, Science Publishers, p. 32, ISBN 9781578082285, http://books.google.com/?id=RgQLISN8zT8C&pg=PA32, retrieved 2009-08-15 
  6. ^ [1]
  7. ^ a b Exogenous Dormancy | Royal Tasmanian Botanical Gardens
  8. ^ Physiological Dormancy | Royal Tasmanian Botanical Gardens
  9. ^ International Workshop on Seeds, and G. Nicolas. 2003. The biology of seeds recent research advances : proceedings of the Seventh International Workshop on Seeds, Salamanca, Spain 2002. Wallingford, Oxon, UK: CABI Pub. Page 113.
  10. ^ McDonald, M. B.; Kwong, Francis Y. (2005), "Flower seeds: biology and technology CABI Publishing Series", Publisher CABI: 167, ISBN 0851999069, http://books.google.com/?id=WBw_EJSRNrYC&pg=PA161, retrieved 2009-08-15 
  11. ^ http://www.uky.edu/Ag/Horticulture/kytreewebsite/Propagation/glossary/combinational%20dorm.pdf
  12. ^ The Seed Biology Place - Seed Dormancy
  13. ^ Bewley, J. Derek, and Michael Black. 1994. Seeds physiology of development and germination. The language of science. New York: Plenum Press. page 230.